removed pytorch stt inference scripts (#305)

Co-authored-by: Eugene <eugene@kyutai.org>
This commit is contained in:
eugene-kharitonov 2025-06-20 17:06:14 +02:00 committed by GitHub
parent 1290f56dcd
commit 4f7ce70e22
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 0 additions and 607 deletions

View file

@ -1,385 +0,0 @@
"""
Example implementation of the streaming STT example. Here we group
test utterances in batches (pre- and post-padded with silence) and
and then feed these batches into the streaming STT model frame-by-frame.
Example command:
```
uv run scripts/streaming_stt.py \
--dataset meanwhile \
--hf-repo kyutai/<REPO> \
--hf-cache-dir /home/user/huggingface_cache
```
"""
# The outputs I get on my H100 using this code with the 2.6B model,
# bsz 32:
# LibriVox === cer: 4.09% wer: 7.33% corpus_wer: 6.78% RTF = 52.72
# Ami === cer: 15.99% wer: 18.78% corpus_wer: 12.20% RTF = 28.37
# LibriSpeech other === cer: 2.31% wer: 5.24% corpus_wer: 4.33% RTF = 44.76
# LibriSpeech clean === cer: 0.67% wer: 1.95% corpus_wer: 1.69% RTF = 68.19
# Tedlium (short) === cer: 2.15% wer: 3.65% corpus_wer: 3.33% RTF = 67.44
# spgispeech === cer: 0.99% wer: 2.00% corpus_wer: 2.03% RTF = 78.64
# gigaspeech === cer: 6.80% wer: 11.31% corpus_wer: 9.81% RTF = 64.04
# earnings22 (short) === cer: 12.63% wer: 15.70% corpus_wer: 11.02% RTF = 50.13
# Meanwhile === cer: 2.02% wer: 5.50% corpus_wer: 5.60% RTF = 69.19
# Tedlium (long) == cer: 1.53% wer: 2.56% corpus_wer: 2.97% RTF = 33.92
# Rev16 === cer: 6.57% wer: 10.08% corpus_wer: 11.43% RTF = 40.34
# Earnings21 === cer: 5.73% wer: 9.84% corpus_wer: 10.38% RTF = 73.15
import dataclasses
import julius
import jiwer
from datasets import load_dataset, Dataset
from whisper.normalizers import EnglishTextNormalizer
import argparse
import torch
import moshi.models
import tqdm
import time
_NORMALIZER = EnglishTextNormalizer()
def get_text(sample):
possible_keys = [
"text",
"sentence",
"normalized_text",
"transcript",
"transcription",
]
for key in possible_keys:
if key in sample:
return sample[key]
raise ValueError(
f"Expected transcript column of either {possible_keys}."
f"Got sample with keys: {', '.join(sample.keys())}. Ensure a text column name is present in the dataset."
)
# The two functions below are adapted from https://github.com/huggingface/open_asr_leaderboard/blob/main/normalizer/data_utils.py
def normalize(batch):
batch["original_text"] = get_text(batch)
batch["norm_text"] = _NORMALIZER(batch["original_text"])
return batch
def is_target_text_in_range(ref):
if ref.strip() == "ignore time segment in scoring":
return False
else:
return ref.strip() != ""
# End of the adapted part
class AsrMetrics:
def __init__(self):
self.cer_sum = 0.0
self.wer_sum = 0.0
self.errors_sum = 0.0
self.total_words_sum = 0.0
self.num_sequences = 0.0
def update(self, hyp: str, ref: str) -> None:
normalized_ref = _NORMALIZER(ref)
normalized_hyp = _NORMALIZER(hyp)
this_wer = jiwer.wer(normalized_ref, normalized_hyp)
this_cer = jiwer.cer(normalized_ref, normalized_hyp)
measures = jiwer.compute_measures(normalized_ref, normalized_hyp)
self.wer_sum += this_wer
self.cer_sum += this_cer
self.errors_sum += (
measures["substitutions"] + measures["deletions"] + measures["insertions"]
)
self.total_words_sum += (
measures["substitutions"] + measures["deletions"] + measures["hits"]
)
self.num_sequences += 1
def compute(self) -> dict:
assert (
self.num_sequences > 0
), "Unable to compute with total number of comparisons <= 0" # type: ignore
return {
"cer": (self.cer_sum / self.num_sequences),
"wer": (self.wer_sum / self.num_sequences),
"corpus_wer": (self.errors_sum / self.total_words_sum),
}
def __str__(self) -> str:
result = self.compute()
return " ".join(f"{k}: {100 * v:.2f}%" for k, v in result.items())
class Timer:
def __init__(self):
self.total = 0
self._start_time = None
def __enter__(self):
self._start_time = time.perf_counter()
return self
def __exit__(self, *_):
self.total += time.perf_counter() - self._start_time
self._start_time = None
@dataclasses.dataclass
class _DatasetInfo:
alias: str
name: str
config: str
split: str = "test"
_DATASETS = [
# Long-form datasets from distil-whisper
_DatasetInfo("rev16", "distil-whisper/rev16", "whisper_subset"),
_DatasetInfo("earnings21", "distil-whisper/earnings21", "full"),
_DatasetInfo("earnings22", "distil-whisper/earnings22", "full"),
_DatasetInfo("tedlium", "distil-whisper/tedlium-long-form", None),
_DatasetInfo("meanwhile", "distil-whisper/meanwhile", None),
# Short-form datasets from OpenASR leaderboard
_DatasetInfo("ami", "hf-audio/esb-datasets-test-only-sorted", "ami"),
_DatasetInfo(
"librispeech.clean",
"hf-audio/esb-datasets-test-only-sorted",
"librispeech",
split="test.clean",
),
_DatasetInfo(
"librispeech.other",
"hf-audio/esb-datasets-test-only-sorted",
"librispeech",
split="test.other",
),
_DatasetInfo("voxpopuli", "hf-audio/esb-datasets-test-only-sorted", "voxpopuli"),
_DatasetInfo("spgispeech", "hf-audio/esb-datasets-test-only-sorted", "spgispeech"),
_DatasetInfo("gigaspeech", "hf-audio/esb-datasets-test-only-sorted", "gigaspeech"),
_DatasetInfo("tedlium-short", "hf-audio/esb-datasets-test-only-sorted", "tedlium"),
_DatasetInfo(
"earnings22-short", "hf-audio/esb-datasets-test-only-sorted", "earnings22"
),
]
DATASET_MAP = {dataset.alias: dataset for dataset in _DATASETS}
def get_dataset(args) -> Dataset:
if args.dataset not in DATASET_MAP:
raise RuntimeError("Unknown dataset")
info = DATASET_MAP[args.dataset]
dataset = load_dataset(
info.name,
info.config,
split=info.split,
cache_dir=args.hf_cache_dir,
streaming=False,
token=True,
)
dataset = dataset.map(normalize)
dataset = dataset.filter(is_target_text_in_range, input_columns=["norm_text"])
return dataset
@torch.no_grad
def get_padded_batch(
audios: list[tuple[torch.Tensor, int]],
before_padding: float,
after_padding: float,
audio_encoder,
):
sample_rate = audio_encoder.sample_rate
max_len = 0
batch = []
durations = []
for audio, sr in audios:
durations.append(audio.shape[-1] / sr)
audio = julius.resample_frac(audio, int(sr), int(sample_rate))
audio = torch.nn.functional.pad(
audio, (int(before_padding * sample_rate), int(after_padding * sample_rate))
)
max_len = max(max_len, audio.shape[-1])
batch.append(audio)
target = max_len
if target % audio_encoder.frame_size != 0:
target = target + (
audio_encoder.frame_size - max_len % audio_encoder.frame_size
)
padded_batch = torch.stack(
[
torch.nn.functional.pad(audio, (0, target - audio.shape[-1]))
for audio in batch
]
)
return padded_batch
@torch.no_grad
def streaming_transcribe(
padded_batch: torch.Tensor,
mimi,
lm_gen,
):
bsz = padded_batch.shape[0]
text_tokens_acc = []
with mimi.streaming(bsz), lm_gen.streaming(bsz):
for offset in range(0, padded_batch.shape[-1], mimi.frame_size):
audio_chunk = padded_batch[:, offset : offset + mimi.frame_size]
audio_chunk = audio_chunk[:, None, :]
audio_tokens = mimi.encode(audio_chunk)
text_tokens = lm_gen.step(audio_tokens)
if text_tokens is not None:
text_tokens_acc.append(text_tokens)
return torch.concat(text_tokens_acc, axis=-1)
def run_inference(
dataset,
mimi,
lm_gen,
tokenizer,
padding_token_id,
before_padding_sec,
after_padding_sec,
):
metrics = AsrMetrics()
audio_time = 0.0
inference_timer = Timer()
for batch in tqdm.tqdm(dataset.iter(args.batch_size)):
audio_data = list(
zip(
[torch.tensor(x["array"]).float() for x in batch["audio"]],
[x["sampling_rate"] for x in batch["audio"]],
)
)
audio_time += sum(audio.shape[-1] / sr for (audio, sr) in audio_data)
gt_transcripts = batch["original_text"]
padded_batch = get_padded_batch(
audio_data,
before_padding=before_padding_sec,
after_padding=after_padding_sec,
audio_encoder=mimi,
)
padded_batch = padded_batch.cuda()
with inference_timer:
text_tokens = streaming_transcribe(
padded_batch,
mimi=mimi,
lm_gen=lm_gen,
)
for batch_index in range(text_tokens.shape[0]):
utterance_tokens = text_tokens[batch_index, ...]
utterance_tokens = utterance_tokens[utterance_tokens > padding_token_id]
text = tokenizer.decode(utterance_tokens.cpu().numpy().tolist())
metrics.update(hyp=text, ref=gt_transcripts[batch_index])
return metrics, inference_timer.total, audio_time
def main(args):
torch.set_float32_matmul_precision("high")
info = moshi.models.loaders.CheckpointInfo.from_hf_repo(
args.hf_repo,
moshi_weights=args.moshi_weight,
mimi_weights=args.mimi_weight,
tokenizer=args.tokenizer,
config_path=args.config_path,
)
mimi = info.get_mimi(device=args.device)
tokenizer = info.get_text_tokenizer()
lm = info.get_moshi(
device=args.device,
dtype=torch.bfloat16,
)
lm_gen = moshi.models.LMGen(lm, temp=0, temp_text=0.0)
dataset = get_dataset(args)
padding_token_id = info.raw_config.get("text_padding_token_id", 3)
# Putting in some conservative defaults
audio_silence_prefix_seconds = info.stt_config.get(
"audio_silence_prefix_seconds", 1.0
)
audio_delay_seconds = info.stt_config.get("audio_delay_seconds", 5.0)
wer_metric, inference_time, audio_time = run_inference(
dataset,
mimi,
lm_gen,
tokenizer,
padding_token_id,
audio_silence_prefix_seconds,
audio_delay_seconds + 0.5,
)
print(wer_metric, f"RTF = {audio_time / inference_time:.2f}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Example streaming STT inference.")
parser.add_argument(
"--dataset",
required=True,
choices=DATASET_MAP.keys(),
help="Dataset to run inference on.",
)
parser.add_argument(
"--hf-repo", type=str, help="HF repo to load the STT model from. "
)
parser.add_argument("--tokenizer", type=str, help="Path to a local tokenizer file.")
parser.add_argument(
"--moshi-weight", type=str, help="Path to a local checkpoint file."
)
parser.add_argument(
"--mimi-weight", type=str, help="Path to a local checkpoint file for Mimi."
)
parser.add_argument(
"--config-path", type=str, help="Path to a local config file.", default=None
)
parser.add_argument(
"--batch-size",
type=int,
help="Batch size.",
default=32,
)
parser.add_argument(
"--device",
type=str,
default="cuda",
help="Device on which to run, defaults to 'cuda'.",
)
parser.add_argument("--hf-cache-dir", type=str, help="HuggingFace cache folder.")
args = parser.parse_args()
main(args)

View file

@ -1,222 +0,0 @@
"""An example script that illustrates how one can get per-word timestamps from
Kyutai STT models.
Usage:
```
uv run scripts/streaming_stt_timestamps.py \
--hf-repo kyutai/stt-2.6b-en \
--file bria.mp3
```
"""
import itertools
import dataclasses
import julius
import sphn
import argparse
import math
import torch
import moshi.models
import tqdm
@dataclasses.dataclass
class TimestampedText:
text: str
timestamp: tuple[float, float]
def __str__(self):
return f"{self.text} ({self.timestamp[0]:.2f}:{self.timestamp[1]:.2f})"
def tokens_to_timestamped_text(
text_tokens,
tokenizer,
frame_rate,
end_of_padding_id,
padding_token_id,
offset_seconds,
) -> list[TimestampedText]:
text_tokens = text_tokens.cpu().view(-1)
# Normally `end_of_padding` tokens indicate word boundaries.
# Everything between them should be a single word;
# the time offset of the those tokens correspond to word start and
# end timestamps (minus silence prefix and audio delay).
#
# However, in rare cases some complexities could arise. Firstly,
# for words that are said quickly but are represented with
# multiple tokens, the boundary might be omitted. Secondly,
# for the very last word the end boundary might not happen.
# Below is a code snippet that handles those situations a bit
# more carefully.
sequence_timestamps = []
def _tstmp(start_position, end_position):
return (
max(0, start_position / frame_rate - offset_seconds),
max(0, end_position / frame_rate - offset_seconds),
)
def _decode(t):
t = t[t > padding_token_id]
return tokenizer.decode(t.numpy().tolist())
def _decode_segment(start, end):
nonlocal text_tokens
nonlocal sequence_timestamps
text = _decode(text_tokens[start:end])
words_inside_segment = text.split()
if len(words_inside_segment) == 0:
return
if len(words_inside_segment) == 1:
# Single word within the boundaries, the general case
sequence_timestamps.append(
TimestampedText(text=text, timestamp=_tstmp(start, end))
)
else:
# We're in a rare situation where multiple words are so close they are not separated by `end_of_padding`.
# We tokenize words one-by-one; each word is assigned with as many frames as much tokens it has.
for adjacent_word in words_inside_segment[:-1]:
n_tokens = len(tokenizer.encode(adjacent_word))
sequence_timestamps.append(
TimestampedText(
text=adjacent_word, timestamp=_tstmp(start, start + n_tokens)
)
)
start += n_tokens
# The last word takes everything until the boundary
adjacent_word = words_inside_segment[-1]
sequence_timestamps.append(
TimestampedText(text=adjacent_word, timestamp=_tstmp(start, end))
)
(segment_boundaries,) = torch.where(text_tokens == end_of_padding_id)
if not segment_boundaries.numel():
return []
for i in range(len(segment_boundaries) - 1):
segment_start = int(segment_boundaries[i]) + 1
segment_end = int(segment_boundaries[i + 1])
_decode_segment(segment_start, segment_end)
last_segment_start = segment_boundaries[-1] + 1
boundary_token = torch.tensor([tokenizer.eos_id()])
(end_of_last_segment,) = torch.where(
torch.isin(text_tokens[last_segment_start:], boundary_token)
)
if not end_of_last_segment.numel():
# upper-bound either end of the audio or 1 second duration, whicher is smaller
last_segment_end = min(text_tokens.shape[-1], last_segment_start + frame_rate)
else:
last_segment_end = last_segment_start + end_of_last_segment[0]
_decode_segment(last_segment_start, last_segment_end)
return sequence_timestamps
def main(args):
info = moshi.models.loaders.CheckpointInfo.from_hf_repo(
args.hf_repo,
moshi_weights=args.moshi_weight,
mimi_weights=args.mimi_weight,
tokenizer=args.tokenizer,
config_path=args.config_path,
)
mimi = info.get_mimi(device=args.device)
tokenizer = info.get_text_tokenizer()
lm = info.get_moshi(
device=args.device,
dtype=torch.bfloat16,
)
lm_gen = moshi.models.LMGen(lm, temp=0, temp_text=0.0)
audio_silence_prefix_seconds = info.stt_config.get(
"audio_silence_prefix_seconds", 1.0
)
audio_delay_seconds = info.stt_config.get("audio_delay_seconds", 5.0)
padding_token_id = info.raw_config.get("text_padding_token_id", 3)
audio, input_sample_rate = sphn.read(args.file)
audio = torch.from_numpy(audio).to(args.device)
audio = julius.resample_frac(audio, input_sample_rate, mimi.sample_rate)
if audio.shape[-1] % mimi.frame_size != 0:
to_pad = mimi.frame_size - audio.shape[-1] % mimi.frame_size
audio = torch.nn.functional.pad(audio, (0, to_pad))
text_tokens_accum = []
n_prefix_chunks = math.ceil(audio_silence_prefix_seconds * mimi.frame_rate)
n_suffix_chunks = math.ceil(audio_delay_seconds * mimi.frame_rate)
silence_chunk = torch.zeros(
(1, 1, mimi.frame_size), dtype=torch.float32, device=args.device
)
chunks = itertools.chain(
itertools.repeat(silence_chunk, n_prefix_chunks),
torch.split(audio[:, None], mimi.frame_size, dim=-1),
itertools.repeat(silence_chunk, n_suffix_chunks),
)
with mimi.streaming(1), lm_gen.streaming(1):
for audio_chunk in tqdm.tqdm(chunks):
audio_tokens = mimi.encode(audio_chunk)
text_tokens = lm_gen.step(audio_tokens)
if text_tokens is not None:
text_tokens_accum.append(text_tokens)
utterance_tokens = torch.concat(text_tokens_accum, dim=-1)
timed_text = tokens_to_timestamped_text(
utterance_tokens,
tokenizer,
mimi.frame_rate,
end_of_padding_id=0,
padding_token_id=padding_token_id,
offset_seconds=int(n_prefix_chunks / mimi.frame_rate) + audio_delay_seconds,
)
decoded = " ".join([str(t) for t in timed_text])
print(decoded)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Example streaming STT w/ timestamps.")
parser.add_argument(
"--file",
required=True,
help="File to transcribe.",
)
parser.add_argument(
"--hf-repo", type=str, help="HF repo to load the STT model from. "
)
parser.add_argument("--tokenizer", type=str, help="Path to a local tokenizer file.")
parser.add_argument(
"--moshi-weight", type=str, help="Path to a local checkpoint file."
)
parser.add_argument(
"--mimi-weight", type=str, help="Path to a local checkpoint file for Mimi."
)
parser.add_argument(
"--config-path", type=str, help="Path to a local config file.", default=None
)
parser.add_argument(
"--device",
type=str,
default="cuda",
help="Device on which to run, defaults to 'cuda'.",
)
args = parser.parse_args()
main(args)